廖彥勛(Ivan Liao)

Data Analyst/ AI Engineer/Machine Learning Engineer

  核心技術: 開發AI模型、資料庫語法、數據分析專案、自動化流程及API 
  專攻程式: Python、SQL
  成功大學財金所(GPA: 3.9/4.3),大學就讀應用數學系,具備
跨領域能力
 

  Taipei City, Taiwan      [email protected]    0972-185978   TOEIC: 840



程式能力


   Python      SQL      Deep Learning      Docker     Machine Learning   

   Linux      Git      Mongo      Elastic Search      Google Ads   

專長


AI人工智慧

NLP


  • 使用語言: Python 
  • 模型架構: Pytorch、Tensorflow 
  • 模型應用: BERT、ALBERT、DistilBERT、XLNet 
  • 實作領域: 預測商品分類、營業秘密要件預測、文本相似度計算

Deep Learning


  • 使用語言: Python 
  • 模型架構: Pytorch、Tensorflow 
  • 模型應用: CNN、VGG16、ENN、CoANet 
  • 實作領域: 預測商品分類、英特爾影像辨識

Machine Learning


  • 使用語言: Python 
  • 模型架構: sklearn 
  • 模型應用: KNN、XGBoost RandomForest、Regression
  • 實作領域: 預測公司破產、超額認購對於公司過度投資的影響、Titanic 存活分析預測 

數據分析 

Python


  • Process Automation: 開發自動化流程專案,以定時執行數據分析任務 
  • Data Analysis: 利用pyodbc從SQL撈取數據,進行資料預處理,並藉由商業邏輯開發演算法 
  • API Deployment: 利用flask建構API,並使用docker部署上線,以協助前端進行UI設計 
  • Web Crawler: 使用request、beautifulsoup爬取官網文字內容、司法院網站的判決書                                                                      

SQL


  • Stored Procedure: 開發SQL自動化流程,以定時執行資料更新以及任務 
  • Query: 熟悉SQL語法,有效提升邏輯運算及撈取效能 

Google Ads


  • 廣告類型: Shopping campaign, Search campaign
  • Google ads API: 透過使用Big Query語法呼叫API,取得線上SKU的表現數據,協助專案開發 

Other Database 


  • 資料庫: Elastic Search, Mongo
  • 應用: 透過將數據匯入以上資料庫,以提升Query效能,進而優化API反應時間  

Linux 


  • 熟悉基本操作語法,並建立Python Virtualenv,避免開發階段影響線上其他程式 
  • 具備git操作經驗 

Personality 


  • 具備團隊合作以及(跨組)溝通能力 
  • 個性堅毅認真,熱心助人,經公司同仁投票獲選為勞方代表 

工作經歷

資料分析師(ML)

台灣新蛋股份有限公司  •  八月 2021 - 六月 2022

  1. 建立深度學習模型(ALBERT、XLNet、DistilBERT),預測商品分類,提升搜尋引擎的品質。過程訓練近184萬筆的商品文字資訊,且可預測類別高達480類,最終準確度來到87%以上,且修正近30萬筆錯置的商品 
  2. 和前端進行跨組合作,以開發搜尋關鍵字績效API及邏輯,提供使用者有效率的查詢系統 
  3. 開發自動化流程的分析專案(Python、SQL),並利用Airflow進行排程上線 
  4. 開發google ads相關專案,為專案設計排除重複SKU的機制,並提供其他關鍵字專案近90萬筆的數據源,以提升廣告投放效益 

【預測商品分類模型】 

專案目的: 建立商品預測模型,以修正錯誤分類的商品,優化平台搜尋結果 

專案流程:  撈取數據 → 模型訓練 → 開發及部署API  →  開發自動化流程及上線 

  1. 撈取數據: 透過SQL撈取商品的文字資訊,總共取得184萬筆數據進來訓練
  2. 模型訓練: 分別訓練三大模型ALBERT、XLNet、DistilBERT,最終Top5準確度皆超過87%
  3. 開發及部署API:利用flask架構設計出API,讓使用者透過輸入商品編號或是商品資訊取得模型預測結果 
  4. 開發自動化流程及上線 : 透過取得Market部門的待測商品名單,並呼叫三大模型API取得預測類別。經過整合及備份模型預測的邏輯,將最終結果回傳到指定Table並更新任務狀態。 專案結果: 每天執行一次流程,累積修正了近三十萬筆錯誤分類的商品 

【搜尋關鍵字績效API】 

專案目的: 提供使用者關鍵字對應前五名熱門商品的資訊,以便賣家擬定行銷策略 

專案流程:  數據準備及運算 → 匯入數據庫 → 開發及部署API 

  1. 數據準備及運算: 透過有效率的整合及運算多張SQL Table數據,並開發成SP 
  2. 匯入數據庫: 經過測試Mongo及Elastic Search效能,最後選擇匯入後者因為該資料庫對於搜尋結果的檢索能力是較強的 
  3. 開發及部署API :利用flask架構設計API,將使用者輸入的keyword及條件(時間、地區、顯示筆數、頁數等)轉換成ES的Query語法,整理成Json格式並回傳查詢結果 

專案結果: 在數據為百萬級別及大量文字的情況下,API反應時間從6秒優化到2秒,滿足前端UI開發需求以及使用者高效能的查詢

行政人員

聖喬科技股份有限公司  •  六月 2019 - 六月 2020

該新創公司致力於研發智能投資領域,利用AI技術進行投資分析,滿足金融構資產配置的需求。

  1. 負責撰寫客戶提案書及財務分析,為公司計算出合理估值 
  2. 擔任公司聯絡窗口,包含協調公司網頁的設計、公司UI系統及創投基金的會談,展現溝通能力及團隊合作,協助公司技術及業務的推展                                                                                         

學歷


國立成功大學

財務金融研究所

2018 - 2020


國立嘉義大學

應用數學系

2014 - 2018

專案


工作專案-預測商品分類

專案目的:

建立商品預測模型,修正錯誤分類的商品

專案流程:

撈取數據 → 模型訓練 → 開發及部署API → 開發自動化流程及上線

專案成果:

利用超過一百萬筆數據訓練三大模型(ALBERT、XLNet、ALBERT),可預測類別為480類,最終Top5準確度皆超過87%以上,修正了近三十萬筆錯誤分類的商品


工作專案-搜尋關鍵字績效API

專案目的:

提供使用者關鍵字對應前五名熱門商品的資訊

專案流程:

數據準備及運算 → 匯入數據庫(Mongo、Elastic Search) → 開發及部署API

專案成果:

將運算結果匯入ES,最終在大量文字及一百萬筆級別的情況下,API反應時間從6秒優化到2秒,滿足前端UI開發需求以及使用者高效能的查詢



工作專案-Google Ads專案開發

專案目的:

取得google ads線上數據

專案流程:

研究google ads API → 開發自動化流程及上線

專案成果:

設計排除重複SKU機制,並從購物廣告的關鍵字取得九十萬筆的數據,為其他廣告專案注入數據源



技術協助-營業秘密要件預測

專案目的:

目的為辨識公司技術或其他資料是否為營業秘密

專案流程:

數據準備 → 數據清洗 → 模型訓練及預測

專案成果:

最後利用預訓練模型ALBERT進行分類訓練,輸出準確度將近0.88


Kaggle-英特爾影像辨識

專案目的:

建立影像辨識模型以分辨該圖片屬於何種分類

專案流程:

影像預處理 → 模型訓練 模型評估 

專案成果:

成功訓練CNN(2層卷積層、2層池化層+NN)、VGG16(取前13層輸出特徵+NN)、ENN(取前13層輸出特徵+1層卷積層+1層池化層+NN),準確度分別為0.777、0.873、0.886


Kaggle-預測公司破產

專案目的:

建立機器學習模型,利用財務數據預測公司是否會破產

專案流程:

數據清洗→ 特徵工程及EDA → 模型訓練 →  模型評估

專案成果:

透過特徵選擇將95個篩選到25個,最終成功訓練出預測模型KNN、Random Forest及XGBoost,準確度分別為0.950、0.977、XGBoost: 0.978

Powered By CakeResume