CakeResume Talent Search

Advanced filters
On
4-6 years
6-10 years
10-15 years
More than 15 years
Avatar of Garfield Yeh.
Avatar of Garfield Yeh.
商業分析師、數據分析師 @國泰世華商業銀行
2020 ~ Present
大數據分析師、統計分析師、商業分析師、市場分析師
Within one month
葉 孟儒 Garfield 商業分析 • 數據 分析 • 流程設計 • 專案管理  Taipei,TW | [email protected] 技能&工具 專案管理 Trello|MS Office|XMind | InVision|Digwin ERP| 資料分析 Tableau | Teradata| Python | SQL | GA | A/B Testing | 利害關係人分析|使用者旅程圖| 其他 Stable Diffusion|Prompt Engineering TOEIC 700 |Powtoon | PowerDirect 威力導演 | 工作經歷 國泰世華銀行 數位數據暨科技發
Project Management
MS Office
Power BI
Employed
Ready to interview
Full-time / Interested in working remotely
6-10 years
國立交通大學 National Chiao Tung University
科技管理 Management of Technology
Avatar of 賴泳瑄.
Avatar of 賴泳瑄.
技術部主管 @黑瘋科技股份有限公司
2019 ~ Present
AIOT開發工程師
Within one month
賴泳瑄(Aimons) Software [email protected] 大家好,我在大學期間創業開設飲料店持續經營5年,曾經同時管理2間店與12位工讀生,後來因為對於資訊的興趣繼續讀碩士,在碩士期間研究並學習AI與各種語言工具配合過5個科技部計畫,畢業後在東海擔任兼
機器學習、大數據分析、邊緣運算、資料探勘
Application Development
Data Science
Employed
Ready to interview
Full-time / Interested in working remotely
6-10 years
Tunghai University
資訊
Avatar of Jimmy.
Avatar of Jimmy.
廣告優化師 @威朋大數據股份有限公司
2022 ~ Present
Digital Marketing
Within one month
要執行App下載廣告,Meta/UAC/Line/Pragmatic Partners 熟悉appsflyer並做App數據分析(DAU/MAU/留存率),建立App再行銷受眾並優化In-App事件 威朋大數據股份有限公司(Vpon),2022 年1月年9月 廣告優化師/ 營運部 主要負責操作成效型廣告Google/FB/IG/Line等數位媒體廣
專案管理
行銷企劃
Google Analytics
Employed
Ready to interview
Full-time / Interested in working remotely
4-6 years
朝陽科技大學
資訊工程
Avatar of the user.
Avatar of the user.
管理師 @國家中山科學研究院
2021 ~ Present
產品管理師、國外業務、國內業務
Within one month
Microsoft Office
Word
Excel
Employed
Ready to interview
Full-time / Interested in working remotely
6-10 years
國立高雄科技大學 National Kaohsiung University of Science and Technology
國際企業
Avatar of the user.
Avatar of the user.
Business Development (B2B2C) @Hahow 好學校
2022 ~ Present
Product/Project Manager
Within one month
PowerPoint
Excel
Unity3D
Employed
Ready to interview
Full-time / Interested in working remotely
4-6 years
實踐大學(Shih Chien University)
Communications Design
Avatar of the user.
Avatar of the user.
Past
資深軟體工程師 @旭捷資訊有限公司
2023 ~ 2024
軟體工程師
Within one month
Java
Python
Solr
Unemployed
Ready to interview
Full-time / Interested in working remotely
6-10 years
國立清華大學
天文物理
Avatar of 藍元澔(Owen Lan).
Avatar of 藍元澔(Owen Lan).
Ap Microeconomics teacher @VIS@betterworld Lab Experimental High School
2021 ~ Present
consultant
Within one month
輔仁大學,醫學院, 臨床心理學系, 2015 ~ 2018畢業 學習生理學、神經解剖學等醫學知識,並以心理治療與理論為主要學習項目 修習大數據學程 至管理學院修讀額外課程 工作經歷 大華高中國際部,AP 心理學老師,~至今 指導大學先修科目:心理學 電子商務
R language
SPSS
Word
Employed
Ready to interview
Full-time / Interested in working remotely
4-6 years
國立臺灣師範大學
全球策略與經營
Avatar of 溫永靖.
Avatar of 溫永靖.
襄理 @中國信託商業銀行
2022 ~ Present
軟體工程師
Within one month
一專案則推動理財無紙化,實現ipad上直接簽名完成交易指示,擴大客群並強調資訊安全。 學歷 National Chengchi University 資訊科學系 •相關課程:大數據分析、深度學習、深度強化學習、5G 論文: 探討社群媒體對抗式攻擊與防禦對股市交易影響 : 以 Twitter 情感分析為範例 (Exploring Social
Employed
Ready to interview
Full-time / Interested in working remotely
6-10 years
National Chengchi University
資訊科學系
Avatar of 郭懿萱.
Avatar of 郭懿萱.
Past
管理師 @台灣之星
專案經理、產品經理、系統分析師
Within one month
能改善案】備標投標 【台灣之星】大數據解決方案部 - 工程師,2020 年 9 月年 9 月 擁有四年半的電信實務經驗,自學 SQL 與 Tableau 輪調至大數據解決方案部,期望透過結合實務經驗及數據分析能力,使大數據同仁更能理解行銷的問題與提出可行的問題解決
ETL
Google Workspace
Tableau
Unemployed
Ready to interview
Full-time / Interested in working remotely
4-6 years
東吳大學
心理學系
Avatar of 曾文鍾.
Avatar of 曾文鍾.
技術部門經理 @沛鑫包裝科技
2018 ~ Present
R & D technologist/program manager
Within one month
常之步驟。 IO-Link: 以此技術取得設備即時資料,預期透過AI模型訓練優化IOT設備參數。 減碳: 設備進行節能減碳電源設計,佐以大數據回饋,企圖降低碳權成本。 主要貢獻 新產品線開發: 成功推出市場領先的自動化設備系列,提高公司高端設備訂單30
Computer Vision
c#
Automation
Employed
Ready to interview
Full-time / Interested in working remotely
6-10 years
國立中興大學
機械

The Most Lightweight and Effective Recruiting Plan

Search resumes and take the initiative to contact job applicants for higher recruiting efficiency. The Choice of Hundreds of Companies.

  • Browse all search results
  • Unlimited access to start new conversations
  • Resumes accessible for only paid companies
  • View users’ email address & phone numbers
Search Tips
1
Search a precise keyword combination
senior backend php
If the number of the search result is not enough, you can remove the less important keywords
2
Use quotes to search for an exact phrase
"business development"
3
Use the minus sign to eliminate results containing certain words
UI designer -UX
Only public resumes are available with the free plan.
Upgrade to an advanced plan to view all search results including tens of thousands of resumes exclusive on CakeResume.

Definition of Reputation Credits

Technical Skills
Specialized knowledge and expertise within the profession (e.g. familiar with SEO and use of related tools).
Problem-Solving
Ability to identify, analyze, and prepare solutions to problems.
Adaptability
Ability to navigate unexpected situations; and keep up with shifting priorities, projects, clients, and technology.
Communication
Ability to convey information effectively and is willing to give and receive feedback.
Time Management
Ability to prioritize tasks based on importance; and have them completed within the assigned timeline.
Teamwork
Ability to work cooperatively, communicate effectively, and anticipate each other's demands, resulting in coordinated collective action.
Leadership
Ability to coach, guide, and inspire a team to achieve a shared goal or outcome effectively.
Within one month
建築/能源/IoT 資料科學家
Self-Employed
2020 ~ Present
台灣台北市
Professional Background
Current status
Studying
Job Search Progress
Ready to interview
Professions
Big Data Engineer, Data Analyst, Data Scientist
Fields of Employment
Artificial Intelligence / Machine Learning, Internet of Things (IoT), Energy
Work experience
4-6 years
Management
I've had experience in managing 1-5 people
Skills
Microsoft Office
python
machine learning
AI
IoT
Data science
Languages
English
Professional
Chinese
Native or Bilingual
Job search preferences
Positions
資料科學家
Job types
Full-time
Locations
台灣台北
Remote
Interested in working remotely
Freelance
Yes, I freelance in my spare time
Educations
School
National University of Singapore
Major
Department of building
Print

傅群

0913889502 | [email protected]
https://www.linkedin.com/in/chun-fu/
https://www.kaggle.com/patrick0302

我是一名擁有豐富機器學習和數據分析經驗的專業人士,包含了學術界的博士學歷及豐富的業界經驗,尤其在能源和建築領域有著全面的專案經驗。以下是我職業生涯的亮點和重要成就:
- 在能源和建築領域有全面的機器學習專案經驗,包括預測、異常檢測、填補缺失數據和生成模型等方面
- 在建築和能源領域擁有超過三年的業界工作經驗,包括建築運營和節能策略,參與過數個建築大數據的專案
- 在數據競賽方面擁有豐富經驗,包括在Kaggle程式碼的Master級別,並在太陽能板生產、智慧農業數位分身和西門子永續黑客松等競賽中獲勝
- 多次應邀發表講座和演講,分享能源建模和數據分析方面的知識,包括在台灣電力公司、學術會議以及Python社群
- 在數據競賽、業界工作和學術研究的不同職位中,展示出強大的團隊合作和領導能力

工作經歷


Data Science Competition Expert

一月 2020 - Present  |  Taipei, Taiwan

- 2024 Kaggle獎金競賽:Enefit -預測prosumers能源行為, 銀牌, 71th/2731 on public leaderboard (團隊成員)
- 2023西門子永續技術黑客松:”Swarm Behaviour on the Grid”, 第一名 (團隊成員,獲得5,000歐元)
- 2022 台灣AIGO:透過身體組成與健身數據AI智能健身訓練課程推薦系統, 優勝隊伍 (團隊隊長, 獲得10,000美元)
- 2022年Kaggle社區競賽:大規模能源異常檢測, 第一名(獨立參賽)
- 2021智慧農業數位分身創新應用競賽,第三名 (團隊成員, 獲得1,500美元)
- 2020 Aidea:中科智慧製造-光電製程品質預測, 第一名 (獨立參賽, 獲得1,500美元)
- Kaggle平台的程式碼(notebooks)Master (180th/55809)

資料科學家  •  探識空間科技有限公司

八月 2016 - 一月 2020  |  Taipei, Taiwan

與台積電合作研發: 應用人工智慧於建築設備群的運轉異常偵測及診斷服務
- 實踐能夠大量導入和訓練的建模流程, 應用於超過千台設備、萬點以上的IoT點位
- 應用機器學習技術及早發覺異常徵兆, 提前告知維護人員設備異常及診斷預測
- 獲得內政部建研所2019年、第12屆巢向未來銀獎獎項(總排名第二名)

分析市政府的BA大數據, 並協助BIM-FM系統的建置
- 建置可視化的能源預測及最佳化服務(結合氣象預報)
- 從營運大數據中, 提出數種策略: 冰機預測性控制, 預冷策略, 負荷移轉
- 帶領工讀生完成1000+個空調設備的電子及系統化

建置智慧建築管理系統 (內政部建研所的Living 3.0智慧化展示空間)
- 整合500+的I/O點位, 包含既有系統及新增感測器 (BACnet/Modbus)
- 向參觀民眾展示智慧節能及最佳化控制 (每年約10,000+遊客), 視覺化呈現建築營運

學歷


National University of Singapore

Department of building  •  2020 - 2024

- 專攻建築能源和營運的機器學習技術。研究全面涵蓋了應用ML/DL的預測、異常檢測、缺失數據填補和數據生成
- Technical team in Kaggle competition: <ASHRAE - Great Energy Predictor III>近20年最大的建築能源數據競賽, 數據集涵蓋全球1500棟建築、收集期間長達三年, 協助分析比賽隊伍的機器學習模型及預測表現, 並比較不同的預測模型建構策略
- 博士論文<Automated Pipelines for Enhanced Energy Data Quality: Anomaly Detection, Data Imputation, and Generative Modeling>, 提出了一套結合異常偵測、缺失預測和數據條件生成的自動化流程, 規模化的將能源大數據進行清理和前處理。
- 2023台灣電力公司邀請演講: 數據與電業之旅系列講座 – 以數據探索能源與評估風險,
- 2022 PyCon APAC (python社群年會)公開演講: 從開放數據閱讀台灣能源 - 數據探索、模型預測和風險評估
- 2022 BuildSys2022 Workshop: "1st ACM BuildSys 2022 Tutorial on Electricity Demand Forecasting"

National Taiwan University

Sustainable Environment and Green Architecture  •  2013 - 2015

綠建築標章制度下之節能成效調查與驗證研究

-執行國內首次對EEWH綠建築標章實質效益的全面檢核, 欲了解國內的綠建築制度對於建築耗能是否有顯著的成效
-進行數棟具綠建築標章辦公大樓的EnergyPlus能源性能模擬

National Taiwan University

Bioenvironmental System Engineering  •  2009 - 2013

- NTU Presidential Award (2013)
- Class Representative

學術發表


- Fu, C., Quintana, M., Nagy, Z., & Miller, C. (2024). Filling time-series gaps using image techniques: Multidimensional context autoencoder approach for building energy data imputation. Applied Thermal Engineering, 236, 121545.

- Canaydin, A., Fu, C., Balint, A., Khalil, M., Miller, C., & Kazmi, H. (2024). Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data. Applied Energy, 360, 122741.

- Fu, C., Kazmi, H., Quintana, M., & Miller, C. (2023, November). Enhancing Classification of Energy Meters with Limited Labels using a Semi-Supervised Generative Model. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 450-453).

- H. Kazmi, Fu, C., C. Miller, “Ten questions concerning data-driven modelling and forecasting of operational energy demand at building and urban scale,” Building and Environment, vol. 239, pp. 110407, 2023.

- Fu, C., Arjunan, P., & Miller, C. (2022, November). Trimming outliers using trees: winning solution of the large-scale energy anomaly detection (LEAD) competition. In Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 456-461).

- Miller, C., Picchetti, B., Fu, C., & Pantelic, J. (2022). Limitations of machine learning for building energy prediction: ASHRAE Great Energy Predictor III Kaggle competition error analysis. Science and Technology for the Built Environment, 1-18.

- Fu, C., & Miller, C. (2022). Using Google Trends as a proxy for occupant behavior to predict building energy consumption. Applied Energy, 310, 118343.

- Miller, C., Hao, L., Fu, C. (2022). Gradient boosting machines and careful pre-processing work best: ASHRAE Great Energy Predictor III lessons learned. arXiv preprint arXiv:2202.02898.

- Miller, C., Arjunan, P., Kathirgamanathan, A., Fu, C., Roth, J., Park, J. Y., ... & Haberl, J. (2020). The ASHRAE great energy predictor III competition: Overview and results. Science and Technology for the Built Environment, 26(10), 1427-1447.

語言


  • English — 專業
  • Chinese — 母語或雙語
Resume
Profile

傅群

0913889502 | [email protected]
https://www.linkedin.com/in/chun-fu/
https://www.kaggle.com/patrick0302

我是一名擁有豐富機器學習和數據分析經驗的專業人士,包含了學術界的博士學歷及豐富的業界經驗,尤其在能源和建築領域有著全面的專案經驗。以下是我職業生涯的亮點和重要成就:
- 在能源和建築領域有全面的機器學習專案經驗,包括預測、異常檢測、填補缺失數據和生成模型等方面
- 在建築和能源領域擁有超過三年的業界工作經驗,包括建築運營和節能策略,參與過數個建築大數據的專案
- 在數據競賽方面擁有豐富經驗,包括在Kaggle程式碼的Master級別,並在太陽能板生產、智慧農業數位分身和西門子永續黑客松等競賽中獲勝
- 多次應邀發表講座和演講,分享能源建模和數據分析方面的知識,包括在台灣電力公司、學術會議以及Python社群
- 在數據競賽、業界工作和學術研究的不同職位中,展示出強大的團隊合作和領導能力

工作經歷


Data Science Competition Expert

一月 2020 - Present  |  Taipei, Taiwan

- 2024 Kaggle獎金競賽:Enefit -預測prosumers能源行為, 銀牌, 71th/2731 on public leaderboard (團隊成員)
- 2023西門子永續技術黑客松:”Swarm Behaviour on the Grid”, 第一名 (團隊成員,獲得5,000歐元)
- 2022 台灣AIGO:透過身體組成與健身數據AI智能健身訓練課程推薦系統, 優勝隊伍 (團隊隊長, 獲得10,000美元)
- 2022年Kaggle社區競賽:大規模能源異常檢測, 第一名(獨立參賽)
- 2021智慧農業數位分身創新應用競賽,第三名 (團隊成員, 獲得1,500美元)
- 2020 Aidea:中科智慧製造-光電製程品質預測, 第一名 (獨立參賽, 獲得1,500美元)
- Kaggle平台的程式碼(notebooks)Master (180th/55809)

資料科學家  •  探識空間科技有限公司

八月 2016 - 一月 2020  |  Taipei, Taiwan

與台積電合作研發: 應用人工智慧於建築設備群的運轉異常偵測及診斷服務
- 實踐能夠大量導入和訓練的建模流程, 應用於超過千台設備、萬點以上的IoT點位
- 應用機器學習技術及早發覺異常徵兆, 提前告知維護人員設備異常及診斷預測
- 獲得內政部建研所2019年、第12屆巢向未來銀獎獎項(總排名第二名)

分析市政府的BA大數據, 並協助BIM-FM系統的建置
- 建置可視化的能源預測及最佳化服務(結合氣象預報)
- 從營運大數據中, 提出數種策略: 冰機預測性控制, 預冷策略, 負荷移轉
- 帶領工讀生完成1000+個空調設備的電子及系統化

建置智慧建築管理系統 (內政部建研所的Living 3.0智慧化展示空間)
- 整合500+的I/O點位, 包含既有系統及新增感測器 (BACnet/Modbus)
- 向參觀民眾展示智慧節能及最佳化控制 (每年約10,000+遊客), 視覺化呈現建築營運

學歷


National University of Singapore

Department of building  •  2020 - 2024

- 專攻建築能源和營運的機器學習技術。研究全面涵蓋了應用ML/DL的預測、異常檢測、缺失數據填補和數據生成
- Technical team in Kaggle competition: <ASHRAE - Great Energy Predictor III>近20年最大的建築能源數據競賽, 數據集涵蓋全球1500棟建築、收集期間長達三年, 協助分析比賽隊伍的機器學習模型及預測表現, 並比較不同的預測模型建構策略
- 博士論文<Automated Pipelines for Enhanced Energy Data Quality: Anomaly Detection, Data Imputation, and Generative Modeling>, 提出了一套結合異常偵測、缺失預測和數據條件生成的自動化流程, 規模化的將能源大數據進行清理和前處理。
- 2023台灣電力公司邀請演講: 數據與電業之旅系列講座 – 以數據探索能源與評估風險,
- 2022 PyCon APAC (python社群年會)公開演講: 從開放數據閱讀台灣能源 - 數據探索、模型預測和風險評估
- 2022 BuildSys2022 Workshop: "1st ACM BuildSys 2022 Tutorial on Electricity Demand Forecasting"

National Taiwan University

Sustainable Environment and Green Architecture  •  2013 - 2015

綠建築標章制度下之節能成效調查與驗證研究

-執行國內首次對EEWH綠建築標章實質效益的全面檢核, 欲了解國內的綠建築制度對於建築耗能是否有顯著的成效
-進行數棟具綠建築標章辦公大樓的EnergyPlus能源性能模擬

National Taiwan University

Bioenvironmental System Engineering  •  2009 - 2013

- NTU Presidential Award (2013)
- Class Representative

學術發表


- Fu, C., Quintana, M., Nagy, Z., & Miller, C. (2024). Filling time-series gaps using image techniques: Multidimensional context autoencoder approach for building energy data imputation. Applied Thermal Engineering, 236, 121545.

- Canaydin, A., Fu, C., Balint, A., Khalil, M., Miller, C., & Kazmi, H. (2024). Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data. Applied Energy, 360, 122741.

- Fu, C., Kazmi, H., Quintana, M., & Miller, C. (2023, November). Enhancing Classification of Energy Meters with Limited Labels using a Semi-Supervised Generative Model. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 450-453).

- H. Kazmi, Fu, C., C. Miller, “Ten questions concerning data-driven modelling and forecasting of operational energy demand at building and urban scale,” Building and Environment, vol. 239, pp. 110407, 2023.

- Fu, C., Arjunan, P., & Miller, C. (2022, November). Trimming outliers using trees: winning solution of the large-scale energy anomaly detection (LEAD) competition. In Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 456-461).

- Miller, C., Picchetti, B., Fu, C., & Pantelic, J. (2022). Limitations of machine learning for building energy prediction: ASHRAE Great Energy Predictor III Kaggle competition error analysis. Science and Technology for the Built Environment, 1-18.

- Fu, C., & Miller, C. (2022). Using Google Trends as a proxy for occupant behavior to predict building energy consumption. Applied Energy, 310, 118343.

- Miller, C., Hao, L., Fu, C. (2022). Gradient boosting machines and careful pre-processing work best: ASHRAE Great Energy Predictor III lessons learned. arXiv preprint arXiv:2202.02898.

- Miller, C., Arjunan, P., Kathirgamanathan, A., Fu, C., Roth, J., Park, J. Y., ... & Haberl, J. (2020). The ASHRAE great energy predictor III competition: Overview and results. Science and Technology for the Built Environment, 26(10), 1427-1447.

語言


  • English — 專業
  • Chinese — 母語或雙語